Composite likelihood and two-stage estimation in family studies.
نویسنده
چکیده
In this paper register based family studies provide the motivation for linking a two-stage estimation procedure in copula models for multivariate failure time data with a composite likelihood approach. The asymptotic properties of the estimators in both parametric and semi-parametric models are derived, combining the approaches of Parner (2001) and Andersen (2003). The method is mainly studied when the families consist of groups of exchangeable members (e.g. siblings) or members at different levels (e.g. parents and children). The advantages of the proposed method are especially clear in this last case where very flexible modelling is possible. The suggested method is also studied in simulations and found to be efficient compared to maximum likelihood. Finally, the suggested method is applied to a family study of deep venous thromboembolism where it is seen that the association between ages at onset is larger for siblings than for parents or for parents and siblings.
منابع مشابه
Inflation and Inflation Uncertainty in Iran: An Application of GARCH-in-Mean Model with FIML Method of Estimation
This paper investigates the relationship between inflation and inflation uncertainty for the period of 1990-2009 by using monthly data in the Iranian economy. The results of a two-step procedure such as Granger causality test which uses generated variables from the first stage as regressors in the second stage, suggests a positive relation between the mean and the variance of inflation. However...
متن کاملTwo-stage estimation using copula function
Maximum likelihood estimation of multivariate distributions needs solving a optimization problem with large dimentions (to the number of unknown parameters) but two- stage estimation divides this problem to several simple optimizations. It saves significant amount of computational time. Two methods are investigated for estimation consistency check. We revisit Sankaran and Nair's bivari...
متن کاملBearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...
متن کاملEvaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling
One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biostatistics
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2004